
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2008-03

Statistical debugging

Murphy, Toriano A.
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/4176

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release: distribution is unlimited

STATISTICAL DEBUGGING

by

Toriano A. Murphy

March 2008

 Thesis Advisor: Mikhail Auguston
 Second Reader: Richard Riehle

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2008

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Statistical Debugging

6. AUTHOR(S) Toriano Murphy

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Software debugging is a time consuming and important step in the development and evolution of software

systems. Debugging is a practice that normally gets the least praise but normally requires the most attention and
effort. The aim of debugging is to find and reduce the number of faults in a program, thereby making a program
behave the way it is expected. Even with the advances that have been made with computer speed, graphical user
interfaces, networking abilities and storage capabilities the cost of debugging remains high.

The aim of this thesis is to build on the process of debugging using a statistical approach. Statistical
debugging is not a new phenomenon, but a statistical debugging technique has been developed to assist in addressing
the difficulties of isolating faults in software. The tool developed for debugging by this thesis will save time and
effort in finding faults thereby saving money.

15. NUMBER OF
PAGES

109

14. SUBJECT TERMS
Statistical Debugging, Oracle

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

STATISTICAL DEBUGGING

Toriano A. Murphy
Lieutenant, United States Navy

B.S., Norfolk State University, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2008

Author: Toriano Murphy

Approved by: Mikhail Auguston
Thesis Advisor

Richard Riehle
Second Reader

Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Software debugging is a time consuming and important step in the development

and evolution of software systems. Debugging is a practice that normally gets the least

praise but normally requires the most attention and effort. The aim of debugging is to

find and reduce the number of faults in a program, thereby making a program behave the

way it is expected. Even with the advances that have been made with computer speed,

graphical user interfaces, networking abilities and storage capabilities the cost of

debugging remains high.

The aim of this thesis is to build on the process of debugging using a statistical

approach. Statistical debugging is not a new phenomenon, but a statistical debugging

technique has been developed to assist in addressing the difficulties of isolating faults in

software. The tool developed for debugging by this thesis will save time and effort in

finding faults thereby saving money.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. PROBLEM STATEMENT AND MOTIVATION2

II. RELATED WORK ..5
A. STATISTICAL DEBUGGING: A HYPOTHESIS TESTING-BASED

APPROACH...5
B. FAULT-AWARE FINGERPRINTING: TOWARDS MUTUALISM

BETWEEN FAILURE INVESTIGATION AND STATISTICAL
DEBUGGING...6

C. SCALABLE STATISTICAL BUG ISOLATION...7

III. PRELIMINARY WORK ..9
A. STARTING POINT...9
B. PRELIMINARY EXPERIMENTATION ...16

1. First Computer Experiment “Selection Sort Program”.................16
2. Second Experiment “Triangle Program” ..27

C. PRELIMINARY DATA AND RESULTS ...32

IV. DESIGN OF INSTRUMENTATION TOOL..37
A. ARCHITECTURE OF INSTRUMENTATION TOOL38
B. PROBLEMS ENCOUNTERED WHILE DESIGNING THE TOOL42

1. Conversion..42
2. Global Counter...43

V. BIG EXPERIMENT ..45
A. EXPERIMENT 1 ...45

1. Experiment 1 Results...48
B. EXPERIMENT 2 ...49

1. Experiment 2 Results...50
2. Sensitivity Check..50

VI. CONCLUSION ..53
A. SUMMARY ..53
B. FUTURE WORK...53

APPENDIX. SOURCE CODE...55
A. PRELIMINARY WORK ..55

1. SortTest3.java...55
2. Triangle.java...59

B. BIG EXPERIMENT “EXPERIMENT 1” ...64
1. SingleRunMinimum.java ..64
2. SingleRun_Experiment.java ...76
3. Experiment2B.java ..77
4. Experiment2B.java ..80

 viii

C. INSTRUMENTATION TOOL...83
1. InstrumentationTool.java ...83

LIST OF REFERENCES..91

INITIAL DISTRIBUTION LIST ...93

 ix

LIST OF FIGURES

Figure 1. Hand written algorithm. ...10
Figure 2. Case 1 Test Program ..11
Figure 3. Input used in Case 1...11
Figure 4. Case 1, profile results...12
Figure 5. Case 2 Test Program ..13
Figure 6. Case 2 profile results..13
Figure 7. Case 3 Test program ..15
Figure 8. Case 3, error and observations ...15
Figure 9. First portion of the original Sort class ...18
Figure 10. Second portion of the original Sort class ...19
Figure 11. First half of the Counter3 class..20
Figure 12. Second half of “Counter3” class. ...21
Figure 13. sortTest4 class..23
Figure 14. sortTest4 class continued. ..24
Figure 15. sortTest4 class continued ...25
Figure 16. sortTest4 class continued. ..26
Figure 17. Counter4 class used with Triangle...28
Figure 18. Counter4 class used with Triangle...29
Figure 19. Counter4 class continued. ..30
Figure 20. Counter4 class continued. ..31
Figure 21. Error in predicate 1 ..32
Figure 22. Error in predicate 2 ..32
Figure 23. Error in predicate 4 ..33
Figure 24. Error in predicate 5 ..33
Figure 25. Error in predicate 6 ..34
Figure 26. Error in predicate 7 ..34
Figure 27. Instrumentation tool diagram...38
Figure 28. Examples of instrumented predicates ..39
Figure 29. Instrumentation Test Suite ...40
Figure 30. Conversion Problem...42
Figure 31. Solution to global class problem..43
Figure 32. Experiment 1 test driver/main class...46
Figure 33. Delta method in Counter5 class. ..47
Figure 34. Experiment 1 test 1. ...48
Figure 35. Experiment 1 test 2. ...48
Figure 36. Experiment 1 test 3 ..49
Figure 37. Experiment 2 test 1. ...50
Figure 38. Sensitivity check. ...51

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

EXECUTIVE SUMMARY

Section I describes the basic idea behind debugging and why it is such an

important issue. The purpose and motivation behind this thesis is discussed as well.

Section II provides information on some of the work being conducted in the area

of statistical debugging and provides directions on this thesis.

Section III details the preliminary work that achieved in order to build a solid case

that statistical debugging is a good approach to debugging. Some initial investigation

was done to build a greater understanding about statistical debugging.

Section IV talks about methodology used to design the instrumentation tool. All

the decision making that went into the building the tool is discussed in this section

Section V presents the experiments and evaluation that was performed on the

instrumentation tool. The input data was randomly generated and therefore is not shown,

the results are shown.

Section VI presents the conclusion of this thesis and provides some

recommendations for future work.

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I would like to thank Dr. Mikhail Auguston and Professor Richard Riehle for

providing the direction and the inspiration for this thesis. I would like to thank Professor

Kevin Squire for introducing me to the concept of statistical debugging. I would like to

give a special thanks to Dr. Auguston for all the countless hours that you dedicated to

keeping my compass on true north.

I would like to thank my wife, Audrey, and daughter, Chelsea, for giving me time

to focus on this research. Last, but certainly not less, I must thank God by whom all this

is possible.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

 Over the last few decades software size and complexity has grown at an alarming

rate. Methods for testing and finding bugs in programs have not kept pace with the

growth rate of software growth. In a lot of cases, debugging is still performed by humans

with no assistance from software tools.

Debugging is the dirty little secret of computer science. Despite the
progress we have made in the past 30 years, faster computers, networking,
easy-to-use graphical interfaces, and everything else, we still face some
embarrassing facts about software development. First, computer programs
often don’t work as they should, making software development costly.
And too much buggy software reaches end users, leading to needless
expense and frustration. That’s unfortunate, but most surprising is the fact
that when something does go wrong, the people who write the programs
still lack good ways of figuring out exactly what went wrong. Debugging
is still, as it was 30 years ago, largely a matter of trial and error.
Bordering on scandal is the fact that the computer science community as a
whole has largely ignored the debugging problem. This is inexcusable,
considering the vast economic cost of debugging and the emotional toll
buggy software takes on users and programmers. Today’s commercial
programming environments provide debugging tools that are little better
than the tools that came with programming environments 30 years ago [7].

 The aim of this thesis is to address the difficulty of testing and debugging by

displaying an instrumentation tool and presenting a methodology for finding bugs in

software. The instrumentation tool was written in the Java programming language.

There are many programming languages that could have been utilized to write the

instrumentation tool more efficiently but Java was utilized because it is a mainstream

language. The instrumentation tool reads in a target program. The instrumentation tool

inserts code around three different types of statements in the target program, “if

statements”, “while statements” and “for statements”. These statements are being

monitored because these are critical decision making points in a program which always

yield a true or false outcome and provide useful information when viewing them as a

program profile.

 2

 The main conjecture underlying this research is that the number of True/False

predicate outcomes in a program for correct and incorrect execution should be different.

Of course, these types of errors do not include all possible errors that could occur in the

program, but a significant part of them can be pinpointed using the following approach.

An oracle is a program or snippet of code that is utilized to check the results of the target

program which may have errors of commission inside it. In the future this target

program will be referred to as the test program. The test program and the oracle are

executed using the same random input data. The results of each predicate after execution

in both programs will be recorded in a “Counter Class” for later evaluation. The oracle

will be used as a reference point for the predicate profile in the test program. The delta is

defined as the absolute difference between the total numbers of true visits divided by the

total number of visits in correct and incorrect executions of the test program.

 It is important to understand that there are several steps to debugging a program.

First the fault in a program must be isolated; next the cause of the fault must be

understood. The cause of the fault may involve other parts of the program. Next a

solution has to be derived to address the problem, last the solution has to be applied, and

then tested.

 In this research, the emphasis is placed on isolating the fault since this is normally

the most time consuming. Normally iterative testing is required to isolate the fault,

meaning it will take more time, which ultimately means more money. Some amount of

time must be spent testing and debugging, the goal of debugging is to find the greatest

amount of faults with the least amount of time and effort.

B. PROBLEM STATEMENT AND MOTIVATION

 The purpose of this research is to investigate the plausibility of a proposed

statistical debugging technique to isolate faults in a program with some degree of

certainty.

 First, it must be reiterated that software debugging is a difficult and time

consuming task. An instrumentation tool has been designed to help in the quest to find

 3

faults in a program. The instrumentation tool will instrument target programs so that a

comparison can be made about the predicate profiles in a correct and incorrect test

program execution.

 In this research an oracle will be utilized to verify that the results of a test

program are correct. It is important to understand that the oracle may be partially in-

complete, even in these cases the results will still be of assistance in finding faults in a

program.

 The primary motivation for this research is to show that this statistical debugging

technique is able to find faults in a program. Focusing more research on this topic in the

future will increase the amount of time that can be saved during testing and debugging.

Through experimentation with several test cases in this research, data will be generated to

express the success of this instrumentation tool and to point out areas for future research.

Even though statistical debugging is not exhaustive (nor can it be) this

instrumentation tool could be used to aid in the testing and debugging process. It can be

used to save precious time and resources through the use of the automated

instrumentation tool presented in this paper.

Increased software size and the rate at which software is evolving demands that a

more efficient method of debugging be created to keep pace with these increasing

demands.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. RELATED WORK

 Statistical debugging is a relatively new approach to debugging software. There

are just a few statistical debugging methodologies and techniques that are currently in use

today. The goal of this section is to discuss some of these techniques and to address

some of the strengths and weaknesses associated with each technique.

A. STATISTICAL DEBUGGING: A HYPOTHESIS TESTING-BASED
APPROACH

 SOBER is an approach that looks at two types of fault localization techniques to

find faults in software. First, the static localization technique compares the source code

to a program model. Second, the dynamic localization techniques which contrast correct

versus incorrect program runs.

Unlike existing statistical approaches that select predicates correlated with
program failure, SOBER models the predicate evaluation in both correct
and incorrect executions and regards a predicate as fault-relevant if its
evaluation pattern in incorrect executions significantly diverges from that
in correct ones. Featuring a rationale similar to that of hypothesis testing,
SOBER quantifies the fault relevance of each predicate in a principled
way [9].

 The SOBER methods takes an interesting approach to finding bugs, instead of

analyzing the delta between individual predicates in a correct and incorrect program, it

makes the attempt to find faults by “quantifying the divergence between the models of

correct and incorrect program executions” [9].

 A major challenge with debugging is that faults are hard to isolate and can be

subtle within a program. SOBER addresses the problem of what is referred to as the

“imperfect world” problem by utilizing a test suite that is fault free as the test oracle to

say if the each execution of a model is passing or failing. SOBER has an advantage over

other statistical debugging techniques in that it makes the claim of being able to localize

software faults without knowing anything in advance of the programs semantics. The

 6

disadvantage with SOBER is that it is an empirical study and there is a risk taken in

accepting the validity of the experimental results. This is the case with any empirical

study and it must be taken into consideration.

B. FAULT-AWARE FINGERPRINTING: TOWARDS MUTUALISM
BETWEEN FAILURE INVESTIGATION AND STATISTICAL
DEBUGGING

This paper takes an interesting approach. The author takes two concepts that have

been used to find faults individually and ties them together. Failure investigation and

statistical debugging had always been studied separately until now. The goal is to

combine the two to assist in finding faults in collected program failing traces. Most

complex programs like Microsoft Windows have a failure reporting feature which can

send failing traces of the program back to Microsoft for analysis, the goal of this paper is

to prove that these failing trace can be used for more than just conducting analysis, they

can be used to diagnosis faults.

Failure investigation and statistical debugging are two critical components
in automated failure analysis. Although related, the two components have
always been studied separately in previous work. In this paper, we
propose a fault-aware fingerprinting technique that relates the two
components and puts them into mutualism, i.e., each component benefits
and benefits from the other. Technically, we use statistical debugging
algorithms to find the fault location each failing trace suggest, and take the
suggested fault location as the fingerprint of the failing trace. The
fingerprint is fault-aware in that it embodies the fault location each failing
trace suggests. With fingerprinting, we can cluster together failing traces
that suggest similar fault locations, rather than those that are literally
similar to each other as done by previous work. We observed from
experiments that the fingerprint-based clustering renders more meaning
results than the literal trace similarity-based approach. On the other hand,
we also observe that the investigation of failing traces in the fingerprint
space can help developers interpret statistical debugging results [5].

 The paper is a follow on to the previous work done with the SOBER algorithm

(mentioned in the previous section) and it combines the fault-aware fingerprinting

technique. The fingerprints which represent a failing trace is said to embody the fault

that is pointed to by each failure trace, with that said an election method is used to find

 7

the faults. This is accomplished by treating each predicate which has been instrumented

as a candidate; the citizens who can vote in this case are the failing traces.

 This approach would be even stronger if all predicates where instrumented in the

test program, from there address the problem of rank aggregation which comes into play

when consolidating a number of rankings.

 This paper presents a great question “we are unclear what future work is really

worthwhile and would like to know how industry processes the huge volume of collected

failing traces” [5].

C. SCALABLE STATISTICAL BUG ISOLATION

The aim of this paper is to address statistical debugging by presenting an

algorithm that can single out faults in a program.

We present a statistical debugging algorithm that isolate bugs in programs
containing multiple undiagnosed bugs. Earlier statistical algorithms that
focus solely on identifying predicators that correlate with program failure
perform poorly when there are multiple bugs. Our new technique
separates the effects of different bugs and identifies predicators that are
associated with individual bugs. These predicators reveal both the
circumstances under which bugs occur as well as the frequencies of failure
modes, making it easier to prioritize debugging efforts. Our algorithm is
validated using several case studies, including examples in which the
algorithm identified previously unknown, significant crashing bugs in
widely used systems [2].

This paper builds off of previous work that initially focused on programs with a

single bug. This paper sets some of the preliminary ground work for the direction of this

thesis because it addresses the basis for all statistical debugging. Most methods of

statistical debugging monitor a subset of the predicates in a program using some type of

monitoring technique. The research in this paper builds on these basic concepts used in

Scalable Statistical Bug Isolation paper [2]. An instrumentation tool was designed to

instrument a program and to apply a statistical debugging technique which will be

analyzed in detail in Chapter V. The goal is to see how successful this tool is at isolating

faults. Instead of only monitoring only a subset of the predicates in a program, all

 8

predicates will be monitored with the exception of the case statement. The oracle that

will be used to check result will be a copy of the program being tested with no faults

introduced in the program.

 9

III. PRELIMINARY WORK

A. STARTING POINT

In order to break the inertia and get a glimpse of what statistical debugging is and

may have to offer to the testing and debugging aspect of software development, some

reference point had to be gained. Before any code was ever run on a computer, a few

hand written algorithms were used to see what the preliminary outcome would be, this

was accomplished by using a few toy (small) programs.

The goal of statistical debugging as defined in the introduction is to find faults in

a program by identifying the predicates with the greatest deltas between the predicates in

a correct and incorrect program execution. The hope is that the predicates with the

highest percentage delta between the two programs will point to or within the vicinity of

the fault in the test program. The advantage point in this research is that an oracle exists

and it will say when the test program is giving correct or incorrect results during runtime.

In order for statistical debugging to work, there must be something available to say when

the results of a test program are correct or incorrect. The oracle may be a partial one, but

this is still adequate and better than not having one at all. Even a partial oracle helps in

finding out how accurate this statistical debugging technique is at predicting faults on the

basis of monitoring predicate behavior in a program execution.

 10

Figure 1. Hand written algorithm.

Simple programs like the one in Figure 1 were utilized to conduct preliminary

experimentation. This program was written to return the middle number when given

three numbers as input. The program has three conditional statements (or predicates).

The variables that will be used as input are represented by x1, x2 and x3. The temporary

variables in the program are y1, y2 and y3. Three different experiments where observed

in this program. Each experiment is conducted by introducing an error into the simple

program and running six test cases for each experiment.

Correct program

int x1 = 0; int x2 =0; int x3 = 0;
int y1 = 0; int y2 = 0; int y3 = 0;
int z = 0;

if (x1 ≤ x2) then y1 = x1; y2 = x2;
 else y1 = x2; y2 = x1;

if (y2 ≤ x3) then y3 = x3;
 else y3 = y2; y2 = x3;

if (y1 ≤ y2) then z = y2;
 else z = y1;

print z;

 11

Figure 2. Case 1 Test Program.

A correct version of the program, which we will refer to as the oracle, the test

program which has an error of commission can be seen in Figure 2. The error of

commission was inserted directly after the second if statement (y2 < x3) and is placed in

bold letters.

Figure 3. Input used in Case 1.

Figure 3 shows the input that was used in the oracle and test program. A branch

coverage criterion was utilized to see what the results would look like if all possibly paths

were utilized. The results of z in case 1 seems to be closely related to the order of the

Test program

int x1 = 0; int x2 =0; int x3 = 0;
int y1 = 0; int y2 = 0; int y3 = 0;
int z = 0;

if (x1 ≤ x2) then y1 = x1; y2 = x2;
 else y1 = x2; y2 = x1;

if (y2 ≤ x3) then y1 = x3;
 else y3 = y2; y2 = x3;

if (y1 ≤ y2) then z = y2;
 else z = y1;

Input used for correct and incorrect programs implementing “branch
coverage criterion”

 Oracle Test
1) x1=1 x2=3 x3=5 z = 3 z = 3
2) x1=3 x2=1 x3=5 z = 3 z = 3
3) x1=5 x2=1 x3=3 z = 3 z = 5
4) x1=1 x2=5 x3=3 z = 3 z = 5
5) x1=3 x2=5 x3=1 z = 3 z = 5
6) x1=5 x2=3 x3=1 z = 3 z = 5

 12

input. All the input sets that had variable x3 as the largest integer in the set, the oracle

and the test program have identical results. In the input set where x3 is not the largest the

resulting z which can be seen in Figure 3 are all different.

Figure 4. Case 1, profile results.

Figure 4 shows the predicate profile results for both the oracle and test program

based on the input that was utilized in Figure 3.

The three bit sequence when viewed from left to right represents the result of each

predicate after execution. There are several things that must be considered when

observing the results. A true predicate outcome will be represented by the number one

and a false outcome will be represented by the number zero.

In case 1, out of the six different sets of input only two sets of input rendered

results with different outcome. This is interesting because in the four results that are the

same, the test program provided the same results as the oracle. Four out of six inputs

rendered a false positive output.

Second, the two instances where the results are different, the only difference lies

in the last bit. This is interesting, because in both the oracle and the test program the

program is identical, no faults are introduced until the second predicate. The code that

was changed in the test program was the code directly following the second predicate.

This gives some perspective that the logical flow of the target program is very important.

Correct predicate profiles results In-correct predicate profiles results

 1) 111 1) 110
 2) 011 2) 011
 3) 001 3) 001
 4) 101 4) 110
 5) 100 5) 100
 6) 000 6) 000

 13

The relationship or closeness of a fault to the predicate giving indication of a fault can be

correlated to where the fault resides with respect to the logical flow of the program.

Figure 5. Case 2 Test Program.

Figure 5 shows the test program utilized in case 2 with the error of commission

displayed in bold letters.

Figure 6. Case 2 profile results.

Test program

int x1 = 0; int x2 =0; int x3 = 0;
int y1 = 0; int y2 = 0; int y3 = 0;
int z = 0;

if (x1 ≤ x2) then y1 = x2; y2 = x1;
 else y1 = x2; y2 = x1;

if (y2 ≤ x3) then y3 = x3;
 else y3 = y2; y2 = x3;

if (y1 ≤ y2) then z = y2;
 else z = y1;

Correct predicate profiles results In-correct predicate profiles results

 1) 111 1) 110
 2) 011 2) 011
 3) 001 3) 001
 4) 101 4) 110
 5) 100 5) 100
 6) 000 6) 000

 14

 In Figure 6 the profile results for the oracle and the test program are shown. The

error in case 2 was introduced immediately after the first predicate. The first set of input

values produced an error at the third bit. The fourth set of input values produced an error

at the second bit and the third bit. Since this simple program flows in a sequential order,

it can be deduced that the fault occurred either in the second predicate or somewhere

prior to it. It is impossible to rule out that the fault may not exist in predicate one,

because the program cannot be exhaustively tested.

The assumptions that have been made can be considered naïve, because it only

assumes that there is one fault in the program, which is not the case in the real world. In

the preliminary work only one fault was place in the test program. The goal was to

monitor this simple program to see what the results would be when inserting only one

error of commission into the program.

Unlike in case 1, in case 2, one of the sets produced and output where two of the

bits were incorrect. An attempt can be made to draw a conclusion from this observation

and say that the fault was introduced at the beginning of the program causing errors to be

manifested at bit 2 and 3. In case 2 it can be deduced that a fault exist somewhere in the

program prior to the second predicate. Another conclusion that was drawn here is that all

of the code prior to the predicate must be considered when attempting to isolate faults.

 15

Figure 7. Case 3 Test program.

Figure 7 shows the test program used in case 3 with the error of commission

displayed in bold letters. In this case the error was introduced directly after the first

predicate.

Figure 8. Case 3, error and observations.

 The results of the predicate profiles in case 3 look very similar to the results in

case 2. The error was introduced in the same location in both cases 2 and 3. The first bit

Correct predicate profiles results In-correct predicate profiles results

 1) 111 1) 110
 2) 011 2) 011
 3) 001 3) 000
 4) 101 4) 110
 5) 100 5) 101
 6) 000 6) 011

Test program

int x1 = 0; int x2 =0; int x3 = 0;
int y1 = 0; int y2 = 0; int y3 = 0;
int z = 0;

if (x1 ≤ x2) then y1 = x3; y2 = x2;
 else y1 = x2; y2 = x1;

if (y2 ≤ x3) then y3 = x3;
 else y3 = y2; y2 = x3;

if (y1 ≤ y2) then z = y2;
 else z = y1;

print z;

 16

in the incorrect profile are exactly the same as the first bit in the correct profiles in case 2

and 3, this was expected since no errors were introduced in the first conditional statement

in both cases.

 From a decision making perspective no thought was given at this point to

introduce an error in the predicate itself. All of the effort at this point was focused on

analyzing errors of commission in all parts of the program except the predicates.

B. PRELIMINARY EXPERIMENTATION

 Working with the hand written program initially to get a feel for what statistical

debugging looks like quickly lost its luster because of the simplicity of the program. It

was time to write some small programs that could be run on a computer so that the

programs could be run numerous times. In Figure 8, the results from case 3 are shown;

the same conclusion was drawn here as in case 2.

1. First Computer Experiment “Selection Sort Program”

 The first program run on the computer was designed to take integers as input and

place them in an array. It would then go through the array and sort the numbers in

ascending order and find the median. The sorted numbers and the median was output to

the screen to review for correctness. The number of times a predicate was visited and the

number of times a predicate was true was also output to the screen. A selection sort

program was chosen because it had more conditional statements than the other sorting

algorithms that were available. At this point in the preliminary experimentation the goal

was to find a program that had no more than five to ten predicates since all of the

instrumentation of the target program was being accomplished manually. Before starting

to manually instrument the program a thorough knowledge had to be gained as to what

the target program does. At this point, the architecture for instrumentation was not in

place so; the code that was being tested and the oracle were placed inside the main class.

Only one class was being utilized for experimentation. It was not clear if it would be

wiser to used one class and place all the code inside or if it was better to utilize multiple

 17

classes, only time would tell. From this point on the selection sort program will be

referred to as sortTestx, this will refer to all the iterations of the original program that was

developed.

One of the first orders of business during manual instrumentation was to check

the results of the sortTest1 program for the correctness of result and making sure that all

the numbers that were provide by the user were returned in ascending order, sortTest1 is

the first iteration of the selection sort program. This checking for correctness was

performed by manual inspection. Once satisfied that the program was performing

correctly it was time to utilize a Random Generator in Java to populate the array with

numbers. This was rather simple to do since the Random Generator is a standard feature

in Java and only an instance of the class needed to be instantiated in the program.

Figure 9 and Figure 10 shows the selection sort program that was utilized before

any manual instrumentation was performed on it.

 18

Figure 9. First portion of the original Sort class.

class Selection
{
public static void main(String arg[])
{
int x[]; //declaring an empty array,initialized later
int i;

//checking if arguments have been given or not at the command
//line
if(arg.length==0)
System.out.println("No Arguments Specified...\n");//prints msg
//if no args specified

else
{
x=new int[arg.lenght]; //initializing the array with the no. of
 //args specified

try //trapping any errors that might occur
{
for(i=0;i<x.length;i++) //loop for putting the values into the
//array
x[i]=Integer.parseInt(arg[i]);

selectionSort(x); //calling the method for sorting,defined later
 //in the class

//printing the sorted list
System.out.println("Sorted List:-");

 for(i=0;i<x.length;i++)
 System.out.println(x[i]);
}
catch(NumberFormatException E) //traps the error if specified
 //arg is not a number
{
System.out.println("Given argument is not a number...\n");
 }
 }
}
static void selectionSort(int x[]) //method for sorting the
 //list,made static for using in main
{
int i,j;
int pos=0; //variable to fix a position in array
int min=0; //variable to fix a number as minimum.

for(i=0;i<x.length-1;i++)
{
min=x[i+1]; //setting the minimum number
pos=i+1; //fixing the position to the index of that number

 19

Figure 10. Second portion of the original Sort class.

As previously stated the first thing that had to be accomplished was to test and see

if the selection sort program worked properly. Of course it is impossible to do exhaustive

testing but some basic testing was performed to see if the program would meet the

criteria. Four different simple tests were performed on the selection sort program. First a

test was performed using negative integers only. Second a test was performed using

positive integers only. Third a test was performed using positive and negative integers

and last a test was performed using input other than integers. In all four tests the program

worked as expected. The rationale behind doing these basic test was to test all

possibilities that where of the upmost concern. The only requirements that the selection

sort program had to meet, was to be able to sort all possible combinations of positive and

negative integers.

The next order of business was to write a class that accumulates all the profile

information during the run of a test program after it has been manually instrumented.

The name of the accumulator class that was written to perform this task is the Counter3.

The Counter3 class has six integer arrays, one constructor and two methods. The initial

decision was to count all true and false responses for all instrumented predicate. As time

went by it was realized that the total numbers of time a predicate was visited

encompasses both true and false visits, with that said only true predicates responses

needed to be recorded. The difference between the total number of visits and total

number of true predicates results in the total number of false predicate visits. Since the

}
}

if(x[pos]<x[i]) //if number at x[pos] is less than number at x[i]
 //then swap the values
{
x[pos]=x[pos]+x[i];
x[i]=x[pos]-x[i];
x[pos]=x[pos]-x[i];
 }
 }
 }
}

 20

decision was made at this point to place the test program and the oracle inside the main

class, it was assumed that only one predicate method was needed inside the Counter3

class and would be able to monitor predicates in the test program and oracle program.

Figure 11 and Figure 12 show the code of the Counter3 class which is used to accumulate

predicate profile information.

Figure 11. First half of the Counter3 class.

package thesis_work;

public class Counter3 {

 int numberofVisit [];
 int numbertrue [];
 int numberofVisitCorr [];
 int numbertrueCorr [];
 int numberofVisitInCorr [];
 int numbertrueInCorr [];

 //Constructor
 public Counter3(int num) {
 numberofVisit = new int [num+ 1];
 numbertrue = new int[num + 1];
 numberofVisitCorr = new int [num + 1];
 numbertrueCorr = new int [num + 1];
 numberofVisitInCorr = new int [num + 1];
 numbertrueInCorr = new int [num + 1];

 for (int i =0; i <= num; i++){
 numberofVisit [i] =0;
 numbertrue [i]= 0;
 numberofVisitCorr [i]= 0;
 numbertrueCorr [i]= 0;
 numberofVisitInCorr [i]= 0;
 numbertrueInCorr [i]= 0;
 }
 }
 /*this predicate method monitors the results of
instrumented
 predicates*/
 public boolean predicate (int n, boolean b){

 numberofVisit[n]++ ;

 if (b){
 numbertrue[n]++;

 21

Figure 12. Second half of “Counter3” class.

The code in the Counter3 class reference as (Figure 11 and 12) is highlighted in

red because this is code that did not previously exist; it had to be written for the purpose

of monitoring the predicates in the selection sort program.

Now it was time to manually instrument the selection sort program, this portion of

the preliminary experimentation was very time consuming and difficult. One reason was

because a methodology for instrumenting the target program was understood in theory,

but the challenge in real life is that all programs are different and building a test driver for

a program has to be tailored to the needs of the specific target program. Many mistake

where made in attempting to instrument the selection sort program and the majority were

due to the fact that an intimate knowledge must be obtained about what all the code in a

target program does must be obtained.

The first mistake was the attempt to have two different types of arrays for storing

predicate profile information. Local arrays would be in the main class and accumulator

(global) arrays would be used to store the results of the difference between local arrays,

they are in the Counter3 class. The idea was to have the oracle and the test program both

located inside the main program. Local arrays would be used to store the results of each

predicate during a single run and the difference between the oracle and test program

predicates would be recorded in the arrays in the Counter class. After several iterations of

the selection sort program, a successful implementation of this methodology was

}
 return b;
 }

 //print_array methods was used in to verify the predicate
 //method was functioning correctly during the preliminary
 //experimentation.
 public void print_array(int num){

 System.out.println("This is!!!!");
 for (int i =0; i <= num; i++)
 System.out.println("\t total " + numberofVisit[i] +
 " \t numbertrue " + numbertrue[i]);
 }
}

 22

performed on the Triangle program. Before the Triangle program is discussed, code of

the instrumented sortTes4 program will be displayed and some of the pitfalls and

difficulties that were encountered will be discussed. The sortTest4 program is being

displayed because it was the fourth attempt at making the selection sort program work

properly and it comprises all the mistakes that were made. All of the instrumentation

code will be highlighted in red and the original program will be in black text.

Figure 13 thru Figure 16 display the code of the sortTest4 program. The selection

program uses a method call within the program to call the selectionSort method that actually

sorts the numbers that are provided. Starting at the beginning of the SortTest4 program there

is the standard format used in java, the package name is thesis_work. The class name is

SortTest 4, after the class name an instance of the Counter4 class was declared as static, since

only one instance needed to be instantiated. An obvious pitfall can be seen, it was not clear

at this point if the static Counter class should be used or the “Counter4 global2 = new

Counter4 (5)” should be used. The decision was made to go with the static approach because

it would be possible to inadvertently generate many instances of Counter4 and that was not

the intent. What has needed was only one instance of the Counter4 class that could be used

throughout the execution of one run of the program.

Another pitfall encountered was placing the declaration for the instance of the

Counter4 class inside of the selectionSort method. This problem was not clear initially, but

once some thought was given to understanding what the program was doing it was clear that

every time the selectionSort method was called a new instance of the Counter4 class was

instantiated which is not a good thing. Another pitfall that was encounter was being unsure

as to what exactly need to be monitored. In the case of this selection sort program, the

dilemma was, should an emphasis have been placed on only trying to instrument the

selectionSort method or the entire program? Ultimately it was decided that the focus needed

to be placed on instrumenting the entire program because the objective is to find faults.

Some programs have code that may seem unimportant in order to execute the program. It is

important to remember that debugging entails looking at the entire program. With that said

the decision was made to find another program and to start off with a fresh beginning.

 23

Figure 13. sortTest4 class.

package thesis_work;

import java.util.*;
import java.util.Arrays;

public class SortTest4 {

 static Counter4 global1 = null;

 public static void main(String arg[])
 {
 global1 = new Counter4(5);
 Random generator = new Random();
 Counter4 global2 = new Counter4(5);

 final int ARRAY_SIZE = 100;

 int i;
 int b;

 int x[];
 int y[] = null;

 int countNumbers;

System.out.print("This is just a test program for my thesis work,
\n" + "my goal is to take in numbers from a user. Return the\n"
+ "numbers in ascending order and print out the median.\n" +
 "I will count the number of times the program iterates\n" +
 "through each looping statement as well!\n\n");

 //checking if arguments have been given or not at the
 //command line

 for(int k=0; k<1000; k++) {

 if (arg.length==0){

 x = new int[ARRAY_SIZE];
 y = new int[ARRAY_SIZE];

 for(int j=0; j<ARRAY_SIZE; j++){

 x[j] = generator.nextInt(10000);

 //populating array y with the same numbers as array x.
 y[j] = x[j];

 }

 24

Figure 14. sortTest4 class continued.

 }

 //prints message if no arguments are specified
 //System.out.println("No Arguments Specified from
command line Random " +
 // "generator utilized...\n");

 }else
 {
 x = new int[arg.length]; //declaring an empty
array,initialized later

 for(i = 0; i< x.length; i++) //loop for putting the
values into the array
 x[i]=Integer.parseInt(arg[i]);
 }

 countNumbers = x.length;

 System.out.print("You entered " + countNumbers + "
numbers to be " +
 "sorted." + "\n\n");

 try //trapping any errors that might occur
 {

 selectionSort(x); //calling the method for
sorting,defined later in the class

 //printing the sorted list
 System.out.println("\n\nHere is the sorted list:-");

 }

 catch(NumberFormatException E) //traps the error if
specified arg is not a number
 {
 System.out.println("The given argument/s is not a
number...\n");
 }

 System.out.println("\n");

 int middle = x.length/2; //subcript of middle element
 if (x.length%2 == 1) {

 //Odd number of elements -- return the middle one.
 System.out.println ("Median is " + x[middle] +
"\n");

 25

Figure 15. sortTest4 class continued.

}else
 {
 // Even number -- return average of middle two
 // Must cast the numbers to double before dividing.
 System.out.println ("Median is " + (x[middle-1] +
x[middle]) / 2 + "\n");

 }

 Arrays.sort(y);

 for(i=0; i< x.length -1; i++){

 System.out.println(x[i] +" " + y[i]+ "\n");

 boolean arr_equals = Arrays.equals(x, y);
 if (arr_equals == true){

 //true counter incremented
 global1.predicate(5, 3>1);

 }else{

 //false counter incremented
 global1.predicate(5, 3<1);
 }
 }
 }
 }

 private static void sort(int[] y) {
 // TODO Auto-generated method stub

 }

 static private void selectionSort(int x[]) //method for sorting the
list,made static for use in main
 {

 //Counter4 global1 = new Counter4(4);

 int i,j;
 int pos=0; //variable to fix a position in array
 int min=0; //variable to fix a number as minimum.

 for(i=0; global1.predicate(1, i >x.length-1); i++)
 {

 26

Figure 16. sortTest4 class continued.

min=x[i+1]; //setting the minimum number
pos=i+1; //fixing the position to the index of that number

 for(j=i+1; global1.predicate(2,j<x.length); j++)

 {

 if(global1.predicate(3,min > x[j])) //if number at
//x[j] is greater than minimum then

 {

 min=x[j]; //put x[j] in min
 pos=j; //and change position to index number of j

 }
 }

 if(global1.predicate(4, x[pos]<x[i])) //if number at
//x[pos] is less than number at x[i] then swap the values

 {

 x[pos]=x[pos]+x[i];
 x[i]=x[pos]-x[i];
 x[pos]=x[pos]-x[i];
 }
 }
 global1.print_array(5);
 global1.deltas(5);
 }
}

 27

2. Second Experiment “Triangle Program”

After spending a few weeks on the selection sort program, the decision was made

to find a new program to experiment on, using the information that had been gained from

working on the selection sort program to move forward. Some pseudo code was

available that represented the logic of a Graphical User Interface tool that could take in 3

integers and return if they could be utilized to comprise a triangle. If the integers could

be used to form a triangle the tool would return to the user what type of triangle they

would make i.e., Right triangle, Isosceles Triangle or an Equilateral Triangle. The

pseudo code that was available was taken and the program was written in java so that it

could be used for experimentation purposes. The pseudo code was written very well so it

was easy to convert into java code.

Integers were randomly generated and placed into an array. Two copies of the

integers are stored in different variables so that they can be feed into the oracle and test

program respectively. The decision was made during manual instrumentation that all

arrays used in monitoring the profile of predicates will be located in the Counter class. It

did not matter if the arrays were used to store each individual run of a program or if the

array would store information about multiple runs, it would still be located in the Counter

class.

Upgrades where made to the Counter3 class that were used in the selection sort

program, two methods were added to assist in monitoring predicate profiles. The method

compare was the first method that was added to the Counter class. The compare method

was responsible for comparing the results of the oracle and test program profile for one

single run. The increment method was the second one added. It was responsible for

accumulating the results from comparing the oracle and test program for a single run.

Figures 21-23 display the upgraded Counter3 class, the name of the class was changed to

Counter4 to represent the next iteration of this class.

 28

Figure 17. Counter4 class used with Triangle.

package thesis_work;

/**
 * @author Toriano Murphy
 *
 */
public class Counter4 {

 private int numberofVisit[];
 private int numbertrue[];
 private int numbernottrue[];
 private int numberofVisitCorr[];
 private int numbertrueCorr[];
 private int numberofVisitInCorr[];
 private int numbertrueInCorr[];

 public Counter4(int num) {
 numberofVisit = new int[num + 1];
 numbertrue = new int[num + 1];
 numbernottrue = new int[num + 1];
 numberofVisitCorr = new int[num + 1];
 numbertrueCorr = new int[num + 1];
 numberofVisitInCorr = new int[num + 1];
 numbertrueInCorr = new int[num + 1];

 for (int i = 0; i <= num; i++) {

 numberofVisit[i] = 0;
 numbertrue[i] = 0;
 numbernottrue[i] = 0;
 numberofVisitCorr[i] = 0;
 numbertrueCorr[i] = 0;
 numberofVisitInCorr[i] = 0;
 numbertrueInCorr[i] = 0;

 }
 }
 public boolean predicate(int n, boolean b) {

 numberofVisit[n]++;

 if (b) {
 numbertrue[n]++;

 } else {
 numbernottrue[n]++;

 }
 return b;
 }

 29

Figure 18. Counter4 class used with Triangle.

}

 public void compare (int n){

 for (int i = 0; i < 6; i++){

 if(numbertrue[i] == numbertrue [i + 6]){

 this.increment(i, 1==1);

 }else{
 this.increment(i+6, 1==0);

 }
 }
 for (int i = 0; i < 6; i++){
 numbertrue[i] = 0;
 numbernottrue[i] =0;

 }

 }

 public boolean increment (int i, boolean c){

 numberofVisit[i]++;

 if (c){

 numbertrueCorr[i]++;

 }else {

 numbertrueInCorr[i]++;

 }

 return c;
 }

 30

Figure 19. Counter4 class continued.

}

 public void compare(int n) {

 for (int i = 0; i < 4; i++) {

 if (numbertrue[i + 4] == numbertrue[i + 8]) {

 this.increment(i + 4, 1 == 1);

 } else {
 this.increment(i + 8, 1 == 0);

 }
 }
 for (int i = 0; i < 5; i++) {
 numbertrue[i] = 0;

 }

 }

 public boolean increment(int i, boolean c) {

 numberofVisit[i]++;

 if (c) {

 numbertrueCorr[i]++;

 } else {

 numbertrueInCorr[i]++;

 }

return c;
 }

 31

Figure 20. Counter4 class continued.

 The source code to the Triangle Program can be found in the appendix section of

this thesis. The manual instrumentation process of the Triangle program did take some

time but things went faster here because the basic idea about what needed to be done was

understood after working with the selection sort program. Once the test program of the

Triangle program was instrumented a copy of this program without any faults introduced

was used as the oracle.

 During the instrumentation of the Triangle program it was realized that

automatically instrumenting the test driver would be impossible, because all programs

have different needs in order to run. The goal for the test driver would be to make it as

generic as possible.

public void deltas(int num) {

 for (int i = 0; i < num; i++) {

 System.out
 .println("Delta "
 + i
 + "\t\t"
 + (Math
 .abs((((float)
numbertrueCorr[i] / (float) numberofVisit[i]))
 -
(float) numbertrueInCorr[i]
 /
(float) numberofVisit[i] - 1)));

 }

 }

 public void print_array(int num) {

 System.out.println("Here is the statistical data!!!!\n\n");
 for (int i = 0; i <= num; i++) {

 }

 }

}

 32

 The purpose of the Triangle program was to take in three integers and return what

type of triangle those integers produced. If the integers did not produce a triangle, the

program would let the user know.

C. PRELIMINARY DATA AND RESULTS

Figure 21. Error in predicate 1.

Figure 21 shows the results when an error was introduced in predicate one of the

triangle program. Since predicate one is a for-loop and an error was introduced directly

in the predicate, the following predicates 2–7 were not visited resulting in a division by

zero error. Predicate 1 has a delta of almost 1; a delta of this magnitude is the strongest

indication possible that an error exist in the test program.

Figure 22. Error in predicate 2.

Predicate number of visits number true visits % true visits delta
P1 1000001 1000000 0.999999 0
P2 1000000 0 0 0.75
P3 0 0 #DIV/0! #DIV/0!
P4 0 0 #DIV/0! #DIV/0!
P5 0 0 #DIV/0! #DIV/0!
P6 0 0 #DIV/0! #DIV/0!
P7 0 0 #DIV/0! #DIV/0!

Predicate visits true visits % true visits delta
P1 1 0 0 0.999999
P2 0 0 #DIV/0! #DIV/0!
P3 0 0 #DIV/0! #DIV/0!
P4 0 0 #DIV/0! #DIV/0!
P5 0 0 #DIV/0! #DIV/0!
P6 0 0 #DIV/0! #DIV/0!
P7 0 0 #DIV/0! #DIV/0!

 33

Figure 22 shows the result of introducing an error directly into predicate 2. It has

the strongest indication out of the seven predicated being monitored, in this case give a

true-positive result. It is interesting to note that predicate 1 in this case has a delta of

zero. This means the predicate 1 profile is identical in the oracle and test program.

Figure 23. Error in predicate 4.

 Figure 23 shows the result of introducing an error directly into predicate 4. It has

the strongest indication out of the seven predicated being monitored, in this case giving a

true-positive result.

Figure 24. Error in predicate 5.

 Figure 24 shows the result of introducing an error directly into predicate 5. It has

the strongest indication out of the seven predicated being monitored, in this case giving a

true-positive result. In this case predicate 6 has a relatively strong indication that an error

Predicate number of visits number true visits % true visits delta
P1 1000001 1000000 0.999999 0
P2 4000000 3000000 0.75 0
P3 0 0 #DIV/0! #DIV/0!
P4 1000000 324411 0.324411 0.001058
P5 324411 61308 0.188982494 0.134651778
P6 263103 140443 0.53379475 0.066283737
P7 122660 17765 0.144831241 0.002726408

Predicate number of visits number true visits % true visits delta
P1 1000001 1000000 0.999999 0
P2 4000000 3000000 0.75 0
P3 0 0 #DIV/0! #DIV/0!
P4 1000000 0 0 0.323353
P5 0 0 #DIV/0! #DIV/0!
P6 0 0 #DIV/0! #DIV/0!
P7 0 0 #DIV/0! #DIV/0!

 34

exist as well, even though the error of commission is not in this predicate. This is the

case because the incorrect results from predicate 5 are used in predicate 6, casing a delta

of a significant size.

Figure 25. Error in predicate 6.

 Figure 25 shows the result of introducing an error directly into predicate 6. It has

the strongest indication out of the seven predicated being monitored, in this case giving a

true-positive result.

Figure 26. Error in predicate 7.

 Figure 26 shows the result of introducing an error directly into predicate 7. It has

the strongest indication out of the seven predicated being monitored, in this case give a

true-positive result.

Predicate number of visits number true visits % true visits delta
P1 1000001 1000000 0.999999 0
P2 4000000 3000000 0.75 0
P3 0 0 #DIV/0! #DIV/0!
P4 1000000 323418 0.323418 6.5E-05
P5 323418 17490 0.054078623 0.000252093
P6 305928 183242 0.598971 0.001107487
P7 122686 11712 0.095463215 0.046641618

Predicate number of visits number true visits % true visits delta
P1 1000001 1000000 0.999999 0
P2 4000000 3000000 0.75 0
P3 0 0 #DIV/0! #DIV/0!
P4 1000000 323630 0.32363 0.000277
P5 323630 17657 0.054559219 0.000228503
P6 305973 244663 0.799622843 0.199544356
P7 61310 8739 0.142537922 0.000433089

 35

 Figure 21 through 26 shows results from the Triangle program runs. In all the

case, extensive testing was performed where the fault was introduced directly into the

predicate. Since the input data could be randomly generated, the decision at this point

was to analyze the ability to point to the fault in these cases. In these cases where the

fault was introduced directly in the predicate, this technique was able to point to the

predicate that had the fault 100% of the time in the test that were ran, this does not

represent all possible cases. Of course the code inside a predicate only makes up a small

portion of a program and therefore additional testing must be performed where faults are

introduced into other parts of the program, like assignment statements or code that does

calculations.

 The data produce by the Triangle program seemed promising, at least when

introducing one fault in the program. On that note, it seemed as though statistical

debugging at least in the context of this thesis work may be promising when looking at

faults that reside inside the predicate. It may be limited in the ability to find faults in a

program outside of the predicate, because the predicate itself is the indicator that

acknowledges that a fault may be in the program. The best case scenario is that the fault

lies in the predicate itself; thus far in the Triangle program experiment this technique has

a strong tendency to isolate the fault. Up to this point, the experimentation and

instrumentation process of a program was very time consuming. This needed to be

automated in order to run more experimentation on different types of programs a lot

faster and more efficiently.

 Another challenge that presented itself is how to obtain results from a program.

The problem is that in the real world programs do more than just sort numbers or check

to see if three numbers make a triangle. Therefore, the challenge of obtaining the result

of a program is important. Once results have been obtained it is easy to check them for

correctness.

 36

THIS PAGE INTENTIONALLY LEFT BLANK

 37

IV. DESIGN OF INSTRUMENTATION TOOL

During the preliminary experiments, the amount of work required to manually

instrument a program became apparent. More important, by designing a tool to

automatically instrument a target program, the introduction of error into the instrumented

program is reduced and the speed at which a program could be instrumented for testing is

increased. It is more practical to use an instrumentation tool because of the size of

programs today. Trying to manually instrument a program with several thousands of

lines of code would be time consuming. Testing and debugging is very expensive and

any time a tool can be used to minimize the time needed in instrumenting a program, it

must be welcomed.

There are two steps that must be accomplished before the proposed method of

statistical debugging utilized in this thesis research can be accomplished. First, a target

program must be instrumented with the code that will perform the monitoring of the

target program during runtime. Second the program must be manually set up in a test

suite. As of today, there is no tool available that will “fully” instrument all types of

program, the nature of the program must be understood first, i.e., what is the program

doing, what type of input is required to run the program and how are the results obtained

and checked for correctness. In this thesis a tool was designed to do the instrumentation

of a target program predicates automatically and a methodology was constructed for

building the test driver using a generic template, the test driver aspect is still instrumented

manually. An effort was made to derive a generic solution for the test driver. The needs

of the target program will dictate who much manual instrumentation will be necessary to

perform on the generic test driver.

The instrumentation aspect can be broken down into three steps. First predicates

have to be instrumented and this task is performed automatically using the

instrumentation tool. The predicates in the oracle and the test program are instrumented

automatically. Second the instrumented test run is manually instrumented, because the

needs depend on the program. Third the instrumented oracle run is manually

instrumented because it has the same needs as the test run.

 38

A. ARCHITECTURE OF INSTRUMENTATION TOOL

The architecture of this instrumentation tool can be viewed as Aspect Oriented

Architecture. Several classes work together cross-cutting to produce one executable

entity. This section will discuss and elaborate on the first job of the instrumentation tool.

Next the entire test suite used in conducting the statistical debugging will be viewed and

discussed.

Scan
Target

Program

input

Output File
“Instrumented File”

while != (eof || “//” || “/*” || “if” || “for” || “while”)

“if” “for” “while”

EOF
Close

BufferWriter

Figure 27. Instrumentation tool diagram.

 39

In Figure 27, a display of the instrumentation tool shows a flow diagram of how

the instrumentation code is inserted into a target program. The instrumentation tool

takes in two arguments an input file (inFile) which is the target program ready to receive

the instrumentation code. The second argument is the output file (outFile), this file is the

instrumented program which two copies will be used in the experimentation and will be

covered more in detail in the next chapter. The instrumentation tool reads in the target

program one character at a time. The BufferedReader and BufferedWriter class in java

allows “characters” to be read in and to be written to a file. While the target program is

being read in, the instrumentation tool will continue to read the target program in and

write it to the output file. When the instrumentation tool encounters the keywords, “end

of file, “//”, “/*”, “if”, “for” or “while” the corresponding methods that handle the

instrumentation of these keywords will take over. In the case of “//” the instrumentation

tool understands that this is a comment line and will just copy everything it sees into the

output file until the end of line is reached. Once the end of line is reached the program

continues to scan the file until the while condition is false. In the case of “/*” the

program will copy everything into the output file until a “*/” is seen. It does not matter if

an “if”, “for” or “while” keyword is encountered in a comment section, it is just ignored.

In the case of the key word “if, “for” and “while” are encounter outside a comment line,

the associate method for each is called. The “if statement’ and “while statement” are

instrumented in the same manner.

Figure 28. Examples of instrumented predicates.

In Figure 28, the “if statement” prior to instrumentation was if (min>x[j]). The key to

instrumentation is to look for the first open parenthesis after the “if statement” an insert

global.predicate(x, which is highlighted in red. A counter is used to keep track of the

sortTest1:

1. for (i=0; global.predicate (1, i<x.length-1); i++)

2. if (global.predicate (3,min>x[j]))

 40

number that will be inserted after the second parenthesis. In the case of a “while

statement”, this instrumentation is performed exactly the same as the instrumentation for

an “if statement”.

 The solution to the for-statement had to be approached in a different way. The

key in instrumenting the “for statements” was to find the first semicolon after the

keyword. In Figure 28 immediately after the first semicolon the instrumentation code

appears in read. Next, prior to the second semicolon a close parenthesis was inserted in

the statement. This instrumented code is written to the output file. Once the

instrumentation of the “for” statement is completed the instrumentation program continue

to scan and instrument the target program until the end of file is reached. Once the end of

file is reached, the BufferedReader and the BufferedWriter are both closed.

Figure 29. Instrumentation Test Suite.

 41

 Figure 29 shows the instrumentation test suite as a whole. The test driver is

where the main program is located; this class is responsible for calling the other classes.

The Instrumented Target Program is the target program that has received all the required

instrumentation code; it is adjusted as need to fit properly in the test driver.

 The Oracle class is a copy of the Instrumented Target Program, this class will be

used to verify and check the results of the test program during runtime. Errors of

commission are inserted into the test program. The goal is to see if faults in a program

can be identified by monitoring the behavior of predicates during the run of a program,

using an oracle to confirm when the results of a predicate are correct or incorrect.

 The Counter Class performs all the monitoring during the execution of a test.

This class is where the predicate method is called by the main program. The data

structure (arrays) that are utilized to collect the predicate results is located here. The

method which calculates the difference in predicates in the program that is being tested

and the oracle is located in the Counter Class as well.

There are four methods inside the Counter Class that perform the bulk of the

work. The sumvisistcorrect method is called by the oracle to calculate the number of

times each predicate was visited and each time they visited predicate was true. The

predicate method is responsible for incrementing the array count at the array position

identified by the first argument that is taken in by the predicate, which is a number. The

predicate method will automatically increment the numberofVisitA array in the Counter

Class. In the cases where the predicate is true the numberTrueA array will be

incremented. This predicate method is called by the oracle class. The predicateB

method is called by the test program and performs the same duty as the predicate method

in the oracle class. The numberofVisitB array and the numberTrueB array are

incremented by the predicateB method. The delta method is called once the main loop in

the main program is complete. The delta method calculates the absolute difference

between the predicates in the Oracle that are associated with the same predicates in the

test program.

 42

B. PROBLEMS ENCOUNTERED WHILE DESIGNING THE TOOL

The initial challenge was trying to decide on which programming language should

be utilized to code the instrumentation tool. The decision in the beginning was to use

Rudy, based on the fact that it is object-oriented, there is no need to declare variables

before they are used and it uses minimal punctuation just to mention a few things great

about the language. The decision in the end was to use java on the bases that the majority

of the programming experience was in java and java is a mainstream language. The

instrumentation tool could have been written in Rudy more efficiently or even in Python

which is another power programming language

1. Conversion

The majority of the challenges that where encountered were minor. One problem

that took a little research to find a solution having integers defined in the instrumentation

program and the integers needed to be written to the output file as a character, this

seemed simple at first. Since the BufferedWriter and BufferedReader classes were being

used everything was being manipulated as character. When the time came to insert

instrumentation code, the BufferedWriter would only write out characters as it was

designed to do.

Figure 30. Conversion Problem.

Figure 30 shows the code that was used to address the conversion problem;

bw.write(char) only takes characters as an argument. By inserting the code in red as an

argument it was possible to convert counter which is an integer into a character. This

code is not a part of the BufferedWriter class in Java, but the nature of the problem was

understood and with a little searching a solution was found.

Conversion Problem

bw.write(String.valueOf(Counter));

 43

2. Global Counter

The global variable as understood in a traditional since is not allowed in Java. A

variable that is created with-in a class is only viewable by that class. The dilemma that

existed in this research was that a global variable was needed to hold the predicate results

while the Oracle and Test Program were run up to one hundred thousand times during a

single test. This problem was rectified by using what is known as a Singleton Class in

Java. The singleton design pattern allows only one instantiation of a class. This can be

useful when trying to coordinate actions across multiple classes, as was the problem in

this thesis research. Although the singleton pattern is not called a global pattern, it has all

the characteristic and behaviors of a global entity.

Figure 31. Solution to global class problem.

From main class:

static Counter5 global = Counter5.getcounter5Object();

From Counter class:

public static synchronized Counter5 getcounter5Object() {

 if (counter5Object == null){
 //it's ok we can call this constructor
 counter5Object = new Counter5(15);
 }
 return counter5Object;

 }

// prevent the creation of another instance of this Counter5
class
 public Object clone()

 throws CloneNotSupportedException
 {
 throw new CloneNotSupportedException();

 }
 private static Counter5 counter5Object;

 44

In Figure 31, the code that solves the problem of having a global class is shown.

The method used to create the one instance of the Counter5 class along with the code to

ensure only one instance of the class is instantiated is here. The code used in the main

class is the exact code used in the Oracle and the test program class. The beauty of the

singleton is that the one instantiation of the Counter5 class is coordinated across all the

classes by the test driver/main program.

 45

V. BIG EXPERIMENT

There are few things that must be addressed prior to talking about the main

experimentation. For the sake of clarity the term target program refers to a program that

has been identified as a candidate program to conduct experimentation on. Once the

target program has gone through the automatic instrumentation tool and has been

manually instrumented as needed to run in the test driver, it will be referred to from there

on a the test class. The test class and the oracle class are identical program. During

experimentation errors of commission will be placed inside the test class so that the

results can be analyzed. In order to perform the experiments, programs where the input

could be randomly generated are the only programs that could be utilized for this

research. This made the search for target programs a challenge. Finding programs that

met the criteria of having 10 or more predicates and having input that could be randomly

generated became a challenge. Hundreds of programs were found that were performed

complex mathematical computations. The problem with these programs is that the

methods in the programs had random generators inside. By inventing an instrumentation

tool, the tool itself is limited in the assistance that it offers and can only perform the task

it has been programmed to do. Trying to use programs with multiple random generators

would b to much to deal with at this time.

 The first step before any experimentation was started was to run the program

several times to see if it worked. Along with seeing if the target program worked, a

basic knowledge as to what the target program did had to be understood.

 The target programs where taken from www.java2s.com [8]. This site is

essentially a repository of source code free to the public. The source code is allocated

according to topic making it easy to find of interest.

A. EXPERIMENT 1

 The program utilized in this experiment was written to search for the minimum of

a multivariable function through a steepest-descent method.

 46

 First, the target program was run through the instrumentation tool. The

instrumentation tool takes in two arguments an input file and an output file. The target

program was copied and pasted into the input file. Next the instrumentation tool was

run, after running the target program through the instrumentation tool the output file had

to be manually instrumented in order to run in the test driver. All the code that was of no

use was manually removed from the target program.

Figure 32. Experiment 1 test driver/main class.

public static void main(String argv[]) {

 MinimumA minA = new MinimumA(null, 0, 0);
 MinimumB minB = new MinimumB(null, 0, 0);

 for(int k=0; k < 100000; k++){

 double delA = 1e-6, aA = rand.nextDouble();
 double delB = 1e-6, aB = aA;
 double xA[] = new double[2];
 double xB[] = new double[2];

 xA[0] = 0.1;
 xB[0] = 0.1;

 xA[1] = -1;
 xB[1] = -1;

 minA.steepestDescent(xA, aA, delA);
 minB.steepestDescent(xB, aB, delB);

//This method keeps track of the predicate count for
//each run

 global.sumvisitcorrect(6);

 }
 //This method calculates the absolute difference
between the same predicates
 //in the oracle and the same predicates in the testing
program.
 global.deltas(6);
 }

 47

 Figure 32 shows the test driver that was used to run Experiment 1. As you can

see an instance of the Oracle class (MinimumA) and an instance of the test class were

created so that they could be run 100,000 times in the main loop. Looking at the

variables, it is obvious to see that the same input data was utilized in both classes. A

random double is generated and stored in “aA” and “aB” every time the "for" loop

executes. The instance (minA) of MinimumA class calls its steepestDescent method.

Once minA.steepestDescent(); is finished executing minB.steepestDescent(); executes.

Temporary arrays are used to store the results for iterations through the loop. Before the

loop iterates again the results are stored in the accumulator arrays in the Counter5 class.

The delta method from the Counter5 class is used to calculate the absolute difference

between the predicates in the Oracle class and the predicates in the test class.

Figure 33. Delta method in Counter5 class.

In Figure 33, the math equation that calculates the absolute difference is shown.

The result is going to be a number between 1 and 0 in most case, a rare case was

encountered but no clear explanation could be derived for this phenomena. In the event

no errors of commission have been place in the test class, the delta in all cases will be

0.0.

public static void deltas (int num) {

 for (int i =0; i < num; i++) {

 System.out.println("Delta " + i + "\t\t" +

(Math.abs((((float)numbertrueCorrA_tot[i]/(float)numberofVisitCorrA_to
t[i]))
 -

(float)numbertrueCorrB_tot[i]/(float)numberofVisitCorrB_tot[i])));

 }
 }

 48

1. Experiment 1 Results

 In this subsection the results of several experiments will be presented and

evaluated.

Figure 34. Experiment 1 test 1.

Figure 34 shows the results of test 1 run. An error of commission “i<n” was

introduced into the program inside of predicate zero. In this case predicate 1 is indicating

that it has the greatest probability of being the predicate where the faults may exist.

Predicate 0 is showing a delta of 70 percent but it is not a strong as a delta of 96 percent.

In this research the luxury of knowing exactly where the fault was inserted helps to

discern the ability of this statistical debugging technique to find faults with any degree of

precision. Even though the guilty predicate does not have the highest percentage, it does

have the second highest which is better than having to look through the entire program

trying to find the fault with no sense of direction on where to start looking.

Figure 35. Experiment 1 test 2.

for (int i=0;global.predicateB(0, i>n);++i) dg += fi[i]*fi[i];
 //Error was introduced in conditional statement. It should be:
 //for (int i=0;global.predicateB(0, i<n);++i) dg += fi[i]*fi[i];

Delta 0 0.6666667
Delta 1 0.9652778
Delta 2 NaN
Delta 3 NaN
Delta 4 NaN
Delta 5 0.0

while (global.predicateB(1, (dg < del)))
//should be:
while (global.predicateB(1, (dg>del)))

Delta 0 0.0
Delta 1 0.96268654
Delta 2 NaN
Delta 3 NaN
Delta 4 NaN
Delta 5 0.0

 49

 Figure 35 shows the results of test 2 run. In this test, the error of commission was

introduced inside of the predicate. The greater than signed was changed to a less than

sign. The guilty predicate having the fault has the highest delta, which in this case is 96

percent.

Figure 36. Experiment 1 test 3.

Figure 36 shows the results of test 3; just like in test 2 the guilty predicate in this

case has the largest delta. Several other test where done where errors were only placed

inside the predicate themselves. In the majority of these test the predicate that had the

fault introduced in it had the largest delta. In Experiment 1 the focus was on analyzing

the ability of this technique to indicate that a single error was introduced in the predicate.

In these three test cases there was l test where the guilty predicate did not have the largest

delta, but the delta shown was convincing enough to indicate that a fault may exist there.

In test 3, the guilty predicate that does not present the strongest indication that an

error is present. This is important to note because the mechanism being used to indicate

the presence of a predicate is the predicate profile which only makes up a small portion of

any program. What is promising is that the indication was the second largest indication,

so it is still better than no indication at all.

B. EXPERIMENT 2

The same steps for instrumentation in Experiment 2 were done just like the target

program was instrumented in Experiment 1. In Experiment 2 a program was written for

for (int i=0;global.predicateB(2, i>n);++i) x[i] -= b*fi[i];
//should be:
//for (int i=0;global.predicateB(2, i<n);++i) x[i] -= b*fi[i];

Delta 0 0.0
Delta 1 0.009482682
Delta 2 0.6666667
Delta 3 0.0
Delta 4 0.46608564
Delta 5 0.0

 50

testing purposes to include multiple conditional statements. A method called the

funmethod was written in this target program that called two other methods, funmethod2

and funmethods3. This program was written with the mind-set of having a target

program that would have more than 10 predicates. This program has 15 predicates and

the results of the test that where run will be discussed here.

1. Experiment 2 Results

Figure 37. Experiment 2 test 1.

 Figure 37 shows the result of test 1. The predicate with the fault has the largest

delta. In this test and all other test except one where the error was only introduced in the

predicate the guilty predicate had the largest delta each times in experiment 3.

 Between experiment 1 and 2 this statistical debugging technique showed promise

from the perspective of finding bugs that exist directly in the predicates in a program. It

was now time to see how this technique would perform when faults where introduced in

assignment statement and other areas within a program.

2. Sensitivity Check

 A sensitivity check was performed on experiment 1 to see how sensitive this

debugging technique was at finding bug in other areas of a program other than predicates.

Figure 38 show the results of the sensitivity check that was conducted.

Delta 0 0.0
Delta 1 0.0
Delta 2 NaN
Delta 3 NaN
Delta 4 0.0
Delta 5 0.0
Delta 6 0.0
Delta 7 0.0
Delta 8 NaN
Delta 9 0.993
Delta 10 0.0
Delta 11 0.0
Delta 12 0.0
Delta 13 1.0
Delta 14 0.0

 51

Figure 38. Sensitivity check.

 The first test was to see how sensitive this technique was at indicating that the

fault was in the predicate had the largest delta. Fifty tests were run in this case and 27 of

the time the predicate that had the fault had the largest delta. Only fifty tests were run

because each test had to have the error introduced manually. An error of commission

was introduced and the test suite would run the test program 100,000 times to produce

some quality statistics.

 The second sensitivity test was to see how many times the guilty predicate would

have the largest predicate or if the guilty predicate was one predicate up or down stream

in the logical flow of the program. Just like in the previous case the error was only

introduced in the predicate. In this case 50 tests were run and 36 times the conditions in

this cases were satisfied which is 72 percent of the time. To quote Fred Brooks “there is

no silver bullet” in testing and debugging, but this statistical debugging technique present

an alternative tool that can be used during testing and debugging.

 The third sensitivity check was to evaluate the efficiency of this technique in

finding faults that exist in assignment statements that are either one or two predicates

away from the predicate that is indicating it has the largest delta. As in the previous cases

a total of 50 tests were conducted (manually inserting the faults) and 25 of the test

indicated that the fault in the assignment was one or two predicates up or down stream in

the logical flow of the program away from the predicated with the largest delta.

 The fourth and final sensitivity check was to check the likelihood of finding errors

that were 1 or 2 predicate up or down stream. Fifty tests were conducted, in 28 tests this

techniques was able to indicate that the fault was 1 or 2 predicates away.

 Current Predicates Current Predicate or 1
observations= 50 50
true= 27 36
true/total= 0.54 0.72

1 Assignment 1 or 2 Other 1 or 2
observations= 50 50
true 25 28
true/total= 0.5 0.56

 52

 It has been concluded that this technique looses it ability to find a fault the further

the fault is away from the predicate. In the fourth sensitivity check a fault was place

inside a complex math function. The best that this technique could do was point to the

math function. In larger program where functions can be hundreds of lines long, this

statistical debugging technique is limited in what is can provide in the area of fault

isolation.

 In this research only errors of commission where addressed. They were the only

ones that could be checked. The oracle program is just a copy of the test program with

no errors introduced in it. By making these assumptions about the oracle, it must be

understood that with an oracle errors of omission would be hard to find. Even by using

an instrumentation tool for statistical debugging and having an oracle to monitor the

behavior of predicates, there is a limit to debugging using this statistical debugging

approach.

 53

VI. CONCLUSION

A. SUMMARY

It has been concluded that the tool designed in this research to perform statistical

debugging can be useful but it has limits. Faults in assignment statements may be

associated with one or more predicates. Looking at a predicate with the largest delta may

not lead you to the assignment statement with the fault, but will point to the fault in a lot

of the time. When the assigned variable is used directly by a predicate then it has a

stronger possibility of pointing to the guilty assignment statement

A variable’s scope with-in a program is an important attribute to understand. A

local variable with a fault was easier to pinpoint and had large deltas compared to

variables that were not in the local scope of a predicate that was giving indications of a

fault.

Faults located in mathematical computation within a method were hard to find. It

was possible to trace back upstream from the predicate with the largest delta to the

method with the fault, but this was the only indication given, the fault may exist

anywhere within the method, this is where the statistical debugging technique utilized in

this research looses it effectiveness.

Even though Statistical debugging is not exhaustive and will not find all faults,

Statistical Debugging could be used to aid in the testing and debugging process because it

will save time and resources as well as expedite the debugging process.

B. FUTURE WORK

There are several areas that can be researched in the future, but there are two areas

that should receive the greatest attention.

First, what is the upper bound of statistical debugging (using an oracle approach)

with respect to isolating faults. The fact that statistical debugging only monitors

 54

predicates means that it has limitations in what it can provide. This idea would be useful

in the future because it would give some sense as to how useful this technique would be

during testing and debugging.

Second, what if other profile data is gathered and used to help isolate faults. For

example, what if the variable profile information is analyzed during a test run, is it

possible that multiple profiles of different types can be used to enhance the ability of

statistical debugging.

 55

APPENDIX. SOURCE CODE

A. PRELIMINARY WORK

1. SortTest3.java

package thesis_work;

import java.util.*;

public class SortTest3 {

 public static void main(String arg[])
 {
 Random generator = new Random();
 Counter3 global1 = new Counter3(4);

 final int ARRAY_SIZE = 5;

 int i;
 int b;

 int x[];
 int y[] = null;

 int countNumbers;

 System.out.print("This is just a test program for my thesis
work, \n" + "my goal is to take in numbers from a user. Return
the\n" + "numbers in ascending order and print out the median.\n" +
"I will count the number of times the program iterates\n" +
 "through each looping statement as well!\n\n");

 //checking if arguments have been given or not at the command
//line

 for(int k=0; k<5; k++) {

 if (arg.length==0){

 for(int j=0; j<ARRAY_SIZE; j++){

 x[j] = generator.nextInt(500);

 56

x = new int[ARRAY_SIZE];
 y = new int[ARRAY_SIZE];

 for(int j=0; j<ARRAY_SIZE; j++){

 x[j] = generator.nextInt(500);

 //populating array y with the same numbers as array x.
 y[j] = x[j];
 }

 }else
 {
 x = new int[arg.length]; //declaring an empty
array,initialized later

 for(i = 0; i< x.length; i++) //loop for putting the
values into the array
 x[i]=Integer.parseInt(arg[i]);

 }

 countNumbers = x.length;

System.out.print("You entered " + countNumbers + " numbers to be " +
 "sorted." + "\n\n");

 try //trapping any errors that might occur
 {

 //calling the method for sorting,defined later in the class
 selectionSort(x);

 //printing the sorted list
 System.out.println("\n\nHere is the sorted list:-");

 57

for (i = 0; i < x.length; i++)
 System.out.println(x[i] + "");

 }
 //traps the error if specified arg is not a number
 catch (NumberFormatException E) {
System.out.println("The given argument/s is not a number...\n");
 }

 System.out.println("\n");

 int middle = x.length / 2; //subcript of middle element
 if (x.length % 2 == 1) {

 //Odd number of elements -- return the middle one.
 System.out.println("Median is " + x[middle] + "\n");
 } else {
 // Even number -- return average of middle two
 // Must cast the numbers to double before dividing.
 System.out.println("Median is " + (x[middle - 1] + x[middle])
 / 2 + "\n");

 }
 }
 }

 static void selectionSort(int x[]) //method for sorting the
list,made static for using in main
 {

 Counter3 global1 = new Counter3(4);

 int i, j;
 int pos = 0; //variable to fix a position in array
 int min = 0; //variable to fix a number as minimum.

 for (i = 0; global1.predicate(1, i < x.length - 1); i++)
{

 58

 min = x[i + 1]; //setting the minimum number
 pos = i + 1; //fixing the position to the
index of that number

 for (j = i + 1; global1.predicate(2, j < x.length); j++)

 {

 if (global1.predicate(3, min > x[j]))
//if number at x[j] is graeter than minimum then

 {

 min = x[j]; //put x[j] in min
 pos = j; //and change position to index
number of j

 }
 }

 if (global1.predicate(4, x[pos] < x[i])) //if
number at x[pos] is less than number at x[i] then swap the
values

 {

 x[pos] = x[pos] + x[i];
 x[i] = x[pos] - x[i];
 x[pos] = x[pos] - x[i];
 }

 }
 global1.print_array(4);

 /*if (i == x.length - 2){
 global1.print_array(4);
 }else {
 //Do nothing!
 } */
 }
}

 59

2. Triangle.java

package thesis_work;

import java.util.Random;

public class Triangle {

 static Counter4 global1 = null;

 public static void main(String[] args) {

 global1 = new Counter4(11);

 Random generator = new Random();

 final int ARRAY_SIZE = 3;

 int x[];

 int a = 0;
 int l = 0;
 int b = 0;
 int m = 0;
 int c = 0;
 int n = 0;
 int atemp = 0;
 int ltemp = 0;
 int btemp = 0;
 int mtemp = 0;
 int ctemp = 0;
 int ntemp = 0;

 int current_profile[];
 current_profile = new int[4];

 int correct_profile[];
 correct_profile = new int[4];

 for (int k = 0; global1.predicate(1, k < 10000000); k++) {

 if (args.length == 0) {

 x = new int[ARRAY_SIZE];

 for (int j = 0; global1.predicate(2, j <
ARRAY_SIZE); j++) {

 x[j] = generator.nextInt(7);

 60

a = x[0];
 l = x[0];
 b = x[1];
 m = x[1];
 c = x[2];
 n = x[2];

 }

 } else {
 x = new int[args.length]; //declaring an
empty array,initialized later

 for (int i = 0; global1.predicate(3, i <
x.length); i++)
 //loop for putting the values into the array
 x[i] = Integer.parseInt(args[i]);

 a = x[0];
 l = x[0];
 b = x[1];
 m = x[1];
 c = x[2];
 n = x[2];

 }

 atemp = a * a;
 btemp = b * b;
 ctemp = c * c;
 ltemp = l * l;
 mtemp = m * m;
 ntemp = n * n;

 if (global1.predicate(4, a < b + c && b < a + c
&& c < a + b)) {
 //System.out.println("This is a Triangle "
+ " " + a + " " + b + " " +c + "\n\n");

 current_profile[0] = 1;

 if (global1.predicate(5, a == b && b == c))
{
 //System.out.println("This is a Equilateral Triangle\n\n");

 correct_profile[1] = 1;
 correct_profile[2] = 0;
 correct_profile[3] = 0;

 61

} else if (global1.predicate(6, a == c || a == b || b == c)) {
 //System.out.println("This is an
Isosceles Triangle\n\n");

 current_profile[2] = 1;
 current_profile[1] = 0;
 current_profile[3] = 0;

 } else if (global1.predicate(7, atemp == b *
b + c * c
 || btemp == a * a + c * c ||
ctemp == a * a + b * b)) {

 current_profile[3] = 1;
 current_profile[2] = 0;
 current_profile[1] = 0;

 } else {

 }

 } else {
 //System.out.println("This is not a Triangle"
+ " " + a + " " + b + " " +c +"\n\n");

 current_profile[0] = 0;
 current_profile[1] = 0;
 current_profile[2] = 0;
 current_profile[3] = 0;
 }

 /*
 * This portion of the triangle program is going to
represent a program
 * that has an error it it.
 */

 //same as predicate 4
 if (global1.predicate(8, l < m + n && m < l + n &&
n < l + m)) {

 correct_profile[0] = 1;

 62

//same as predicate 5
 if (global1.predicate(9, l == m && m == n))
{
 //System.out.println("This is a
Equilateral Triangle\n\n");

 correct_profile[1] = 1;
 correct_profile[2] = 0;
 correct_profile[3] = 0;

 //same as predicate 6
 } else if (global1.predicate(10, l == n ||
l == m || m == n)) {
 //System.out.println("This is an Isosceles Triangle\n\n");
 correct_profile[2] = 1;
 correct_profile[1] = 0;
 correct_profile[3] = 0;

 //same as predicate 7
 } else if (global1.predicate(11, ltemp == m
* m + n * n
 || mtemp == l * l + n * n ||
ntemp == l * l + m * m)) {
 //System.out.println("This is a Right Triangle\n\n");

 correct_profile[3] = 1;
 correct_profile[2] = 0;
 correct_profile[1] = 0;

 } else {

 }

 } else {

 correct_profile[0] = 0;
 correct_profile[1] = 0;
 correct_profile[2] = 0;
 correct_profile[3] = 0;

 }

 if (current_profile[0] == correct_profile[0]) {
 global1.compare(0, 1 == 1);
 } else {
 global1.compare(0, 1 == 0);
 }

 63

if (current_profile[1] == correct_profile[1]) {
 global1.compare(1, 1 == 1);
 } else {
 global1.compare(1, 1 == 0);
 }

 if (current_profile[2] == correct_profile[2]) {
 global1.compare(2, 1 == 1);
 } else {
 global1.compare(2, 1 == 0);
 }

 if (current_profile[3] == correct_profile[3]) {
 global1.compare(3, 1 == 1);
 } else {
 global1.compare(3, 1 == 0);
 }

 /*
 * return both arrays back to zero
 */

 current_profile[0] = 0;
 current_profile[1] = 0;
 current_profile[2] = 0;
 current_profile[3] = 0;

 correct_profile[0] = 0;
 correct_profile[1] = 0;
 correct_profile[2] = 0;
 correct_profile[3] = 0;

 }
 global1.print_array(11);

 }

}

 64

B. BIG EXPERIMENT “EXPERIMENT 1”

1. SingleRunMinimum.java

//

//Program file name: SingleRun_Minimum.java

//© Tao Pang 2006

//Last modified: January 18, 2006

//(1) This Java program is part of the book, "An Introduction to
//Computational Physics, 2nd Edition," written by Tao Pang and
//published by Cambridge University Press on January 19, 2006.

//(2) No warranties, express or implied, are made for this program.

//

//An example of searching a minimum of a multivariable
//function through the steepest-descent method.

//(a) This program was taken from a java programming site, it was
augmented by
//Toriano A Murphy to be used in thesis research, altered 15 Oct 07.

package Thesis_Experiment_One;

import java.lang.*;
import java.util.Random;

//The original name of this class is "Minimum"
//File name is

public class SingleRun_Minimum {

 static Counter5 global = Counter5.getcounter5Object();
 static Random rand = new Random();

 public static void main(String argv[]) {

 65

MinimumA minA = new MinimumA(null, 0, 0);
 MinimumB minB = new MinimumB(null, 0, 0);

 for (int k = 0; k < 100000; k++) {

 double delA = 1e-6, aA = rand.nextDouble();
 double delB = 1e-6, aB = aA;
 double xA[] = new double[2];
 double xB[] = new double[2];

 xA[0] = 0.1;
 xB[0] = 0.1;

 xA[1] = -1;
 xB[1] = -1;

 minA.steepestDescent(xA, aA, delA);
 minB.steepestDescent(xB, aB, delB);

 //This is apart of the original program......
 //System.out.println("The minimum is at"
 //+ " x = " + x[0] +", y = " +x[1]);

 //This method keeps track of the predicate
count for each run
 global.sumvisitcorrect(6);

 }
//This method calculates the absolute difference between the
//same predicates
//in the oracle and the same predicates in the testing program.
 global.deltas(6);
 }

}

 66

package Thesis_Experiment_One;

///
//© Tao Pang 2006
//
//
//Last modified: January 18, 2006
//
//
//(1) This Java program is part of the book, "An Introduction to
//
//Computational Physics, 2nd Edition," written by Tao Pang and
//
//published by Cambridge University Press on January 19, 2006.
//
//
//(2) No warranties, express or implied, are made for this
program.
//

//An example of searching a minimum of a multivariable
//function through the steepest-descent method.

//(a) This program was taken from a java programming site, it
//was utilized by
//Toriano A Murphy to be used in thesis research
//Last modified by Toriano: October 18, 2007.

import java.lang.*;

//This class will be the one where I make all the changes
//"MinimumB". This is the
//testing class
public class MinimumB {

 static Counter5 global = Counter5.getcounter5Object();

 private double x[];
 private double a;
 private double del;

 //static Counter5 global2 = new Counter5(6);

 //Constructor
 public MinimumB(double MinBx[], double MinBa, double
MinBdel) {

 67

x = MinBx;
 a = MinBa;
 del = MinBdel;

 }

// Method to carry out the steepest-descent search.
 public void steepestDescent(double x[],double a, double del) {
 //System.out.println("MinimumB steepest Descent works");
 int n = x.length;
 double h = 1e-6;
 double g0 = g(x);
 double fi[] = new double[n];
 fi = f(x, h);
 double dg = 0;
 for (int i=0;global.predicateB(0, i<n);++i) dg +=
fi[i]*fi[i];
 dg = Math.sqrt(dg);
 double b = a/dg;

 while (global.predicateB(1, (dg > del))) {
 for (int i=0;global.predicateB(2, i<n);++i) x[i] -=
b*fi[i];
 h /= 2;
 fi = f(x, h);
 dg = 0;
 for (int i=0;global.predicateB(3, i<n);++i) dg +=
fi[i]*fi[i];
 dg = Math.sqrt(dg);
 b = a/dg;
 double g1 = g(x);
 if(global.predicateB(4, (g1 > g0))) a /= 2;
 else g0 = g1;
 }
 }

// Method to provide function f = gradient g(x).
 public static double[] f(double x[], double h) {
 int n = x.length;
 double z[] = new double[n];
 double y[] = (double[]) x.clone();
 double g0 = g(x);
 for (int i=0;global.predicateB(5, i<n);++i) {
 y[i] += h;
 z[i] = (g(y)-g0)/h;
 }
 return z;
 }

 68

// Method to provide function g(x).

 public static double g(double x[]) {
 return (x[0]-1)*(x[0]-1)*Math.exp(-x[1]*x[1])
 +x[1]*(x[1]+2)*Math.exp(-2*x[0]*x[0]);
 }

}

 69

package Thesis_Experiment_One;

import java.lang.*;
import java.util.Random;

//MinimumA is the Oracle program, not changes will be made here!
public class MinimumA {

 //field needed for the constructor
 public double x[];
 public double a;
 public double del;

 static Counter5 global = Counter5.getcounter5Object();

 //constructor
 public MinimumA(double MinAx[], double MinAa, double MinAdel){

 x = MinAx;
 a = MinAa;
 del = MinAdel;
 }

 //Method to carry out the steepest-descent search.

 public void steepestDescent(double x[],double a, double del) {
 //System.out.println("MinimumA steepest Descent works");

 int n = x.length;
 double h = 1e-6;
 double g0 = g(x);
 double fi[] = new double[n];
 fi = f(x, h);
 double dg = 0;
 for (int i=0;global.predicate(0, i<n);++i) dg += fi[i]*fi[i];
 dg = Math.sqrt(dg);
 double b = a/dg;

 while (global.predicate(1, (dg > del))) {
 for (int i=0;global.predicate(2, i<n);++i) x[i] -=
b*fi[i];
 h /= 2;
 fi = f(x, h);
 dg = 0;
 for (int i=0;global.predicate(3, i<n);++i) dg +=
fi[i]*fi[i];

 70

dg = Math.sqrt(dg);
 b = a/dg;
 double g1 = g(x);
 if(global.predicate(4, (g1 > g0))) a /= 2;
 else g0 = g1;
 }
 }

// Method to provide function f = gradient g(x).

 public static double[] f(double x[], double h) {
 int n = x.length;
 double z[] = new double[n];
 double y[] = (double[]) x.clone();
 double g0 = g(x);
 for (int i=0;global.predicate(5, i < n);++i) {
 y[i] += h;
 z[i] = (g(y)-g0)/h;
 }
 return z;
 }

// Method to provide function g(x).

 public static double g(double x[]) {
 return (x[0]-1)*(x[0]-1)*Math.exp(-x[1]*x[1])
 +x[1]*(x[1]+2)*Math.exp(-2*x[0]*x[0]);
 }

}

 71

package Thesis_Experiment_One;

/**
 * @author Toriano Murphy
 * This is the monitor class that acts as a global. This Counter5 class
 * is a singleton class that is sharded by all the classes in this program.
 */
public class Counter5 {

 private static int numberofVisitA []; //for one run

 private static int numberofVisitB []; //for one run

 private static int numbertrueA []; //for one run

 private static int numbertrueB []; //for one run

 private static int numberofVisitCorrA_tot []; //for all runs

 private static int numberofVisitCorrB_tot []; //for all runs

 private static int numbertrueCorrA_tot []; //for all runs

 private static int numbertrueCorrB_tot []; //for all runs

 private static int numberofVisitCorrAB_tot [];//for all runs

 private Counter5(int num) {
 numberofVisitA = new int[num + 1];
 numberofVisitB = new int[num + 1];
 numbertrueA = new int[num + 1];
 numbertrueB = new int[num + 1];
 numberofVisitCorrA_tot = new int[num + 1];
 numberofVisitCorrB_tot = new int[num + 1];
 numbertrueCorrA_tot = new int[num + 1];
 numbertrueCorrB_tot = new int [num + 1];
 numberofVisitCorrAB_tot =new int [num +1];

 for (int i =0; i <= num; i++){

 72

numberofVisitA [i] =0;
 numberofVisitB [i] =0;
 numberofVisitCorrA_tot [i]= 0;
 numberofVisitCorrB_tot [i]= 0;
 numbertrueCorrA_tot [i]= 0;
 numbertrueCorrB_tot [i]= 0;
 numbertrueA [i]= 0;
 numbertrueB [i]= 0;
 numberofVisitCorrAB_tot [i] =0;
 }
 }

 public static synchronized Counter5 getcounter5Object() {

 if (counter5Object == null){
 //it's ok we can call this constructor
 counter5Object = new Counter5(15);
 }
 return counter5Object;

 }

// prevent the creation of another instance of this Counter5
class
 public Object clone()

 throws CloneNotSupportedException
 {
 throw new CloneNotSupportedException();

 }

 private static Counter5 counter5Object;

 public static boolean predicate (int n, boolean b){

 numberofVisitA[n]++ ;
 //System.out.println("numberofVisitA " + " " + n + "
" + numberofVisitA[n]);

 if (b){
 numbertrueA[n]++;
 //System.out.println("pred numbertrue " + n +
" " + numbertrueA[n]);
 }
 return b;
 }

 public static boolean predicateB (int n, boolean b){

 73

numberofVisitB[n]++ ;

 if (b){
 numbertrueB[n]++;
 }
 return b;
 }

 public static void sumvisitcorrect(int num){

 for (int i =0; i< num; i++){

 numbertrueCorrA_tot[i] += numbertrueA[i];
 numbertrueCorrB_tot[i] += numbertrueB[i];

 numberofVisitCorrA_tot[i] += numberofVisitA[i];
 numberofVisitCorrB_tot[i] += numberofVisitB[i];
 }

 for (int j =0; j< num; j++){
 numbertrueA[j] = 0;
 numbertrueB[j] = 0;

 numberofVisitA[j] = 0;
 numberofVisitB[j] = 0;
 }
 }

 static void sumvisitincorrect(int num){

 for (int i =0; i< num; i++){

 74

//System.out.println(numberofVisitB[i] + " " + i);
 }

 for (int j =0; j< num; j++){
 numbertrueA[j] = 0;
 numbertrueB[j] = 0;

 numberofVisitA[j] = 0;
 numberofVisitB[j] = 0;
 }
 }

 static void sumvisitincorrect(int num){

 for (int i =0; i< num; i++){

 numbertrueA[i] = 0;
 numbertrueB[i] = 0;

 numberofVisitA[i] = 0;
 numberofVisitB[i] = 0;

 }

 }
 static boolean increment (int i, boolean c){

 numberofVisitCorrA_tot [i]++;
//System.out.println("numberofVisit" + i + " " + numberofVisit[i]);

 if (c){
 numbertrueCorrA_tot[i]++;
 numbertrueCorrB_tot[i]++;

//System.out.println("numbertrueCorr " + numbertrueCorr[i] + "\n");
 }else {
 numbertrueCorrA_tot[i]++;
//System.out.println("numbertrueInCorr " + numbertrueInCorr[i]
//+"\n");

 75

}
 return c;
 }

 public static void deltas (int num) {

 for (int i =0; i < num; i++) {

 System.out.println("Delta " + i + "\t\t" +

 (Math.abs((((float)numbertrueCorrA_tot[i]/(float)numberofVisitC
orrA_tot[i]))
 -

 (float)numbertrueCorrB_tot[i]/(float)numberofVisitCorrB_tot[i]
)));

 }

 }

 static void print_array(int num){

 System.out.println("Here is the statistical
data!!!!\n\n");
 for (int i =0; i <= num; i++) {

 }
 }
}

 76

2. SingleRun_Experiment.java

package Thesis_Experiment_Two;

import java.util.Random;

import Thesis_Experiment_One.Counter5;

public class SingleRun_Experiment {

static Counter5 global = Counter5.getcounter5Object();
static Random rand = new Random();

public static void main(String argv[]) {

 Experiment2A exper2A = new Experiment2A(0, 0, 0);
 Experiment2B exper2B = new Experiment2B(0, 0, 0);

 for(int k=0; k < 100000; k++){

 double A = rand.nextDouble();
 double B = rand.nextDouble();
 double C = rand.nextDouble();

 exper2A.funmethod(A, B, C);
 exper2B.funmethod(A, B, C);

 global.sumvisitcorrect(15);

 }
 global.deltas(15);

 }
}

 77

3. Experiment2B.java

package Thesis_Experiment_Two;

//This is the oracle class

import Thesis_Experiment_One.Counter5;

public class Experiment2A {

 public double a;
 public double b;
 public double c;
 static Counter5 global = Counter5.getcounter5Object();

 public Experiment2A(double ScattAa, double ScattAb, double
ScattAc){

 a = ScattAa;
 b = ScattAb;
 c = ScattAc;
 }

 public void funmethod(double a, double b, double c){

 if(global.predicate(0,(a==b))){

 a = a*b;

 }else if(global.predicate(1, (a*a > 10))){

 for (int i=0;global.predicate(2, i < c);i++){

 i++;
 }

 while (global.predicate(3, (a < b))){

 a++;
 b--;
 }
 } if(global.predicate(4, (a < b))){

 a++;
 while (global.predicate(5,(a<b))){
 System.out.println("");

 78

}
 }else if(global.predicate(6,(b < a))) {
 b++;

 }

 funmethod2();
 funmethod3();
 }

 public void funmethod2(){

 double chelsea = 0;
 double audrey = 0;
 double tori = 0;

 chelsea = a;
 audrey = b;
 tori = c;

 if(global.predicate(7,(chelsea < tori))){

 while (global.predicate(8,(chelsea < tori))){
 chelsea++;
 tori--;
 }

 }else if(global.predicate(9,(chelsea > tori + 10))){

 chelsea--;
 chelsea--;
 }
 for (int i =0;global.predicate(10, i< tori);i++){
 tori--;
 tori--;
 chelsea++;
 i++;
 audrey++;
 }
 }

 public void funmethod3(){

 b = a*a*a;

 while (global.predicate(11,(b < a))){
 a = a/1.5;
 b++;
 }

 if(global.predicate(12,(b < c))){

 79

b++;
 c =c*3.14;

 }
 if(global.predicate(13,(c > 20))){

 c--;
 c--;
 c--;
 c = c/1.2;
 }
 if(global.predicate(14,(b < c))){
 b =b*1.7;

 }

 }

}

 80

4. Experiment2B.java

package Thesis_Experiment_Two;

import Thesis_Experiment_One.Counter5;
import java.util.Random;

import Thesis_Experiment_One.Counter5;

//This is the test class where the changes will be made
public class Experiment2B {

 public double a;
 public double b;
 public double c;
 static Counter5 global = Counter5.getcounter5Object();

 public Experiment2B(double ScattBa, double ScattBb, double
ScattBc){
 a = ScattBa;
 b = ScattBb;
 c = ScattBc;
 }

 public void funmethod(double a, double b, double c){

 if(global.predicateB(0,(a==b))){

 a = a*b;
 }else if(global.predicateB(1, (a*a > 10))){

 for (int i=0;global.predicateB(2, i < c);i++){

 i++;
 }
 while (global.predicateB(3, (a < b))){
 a++;
 b--;
 }
 } if(global.predicateB(4, (a < b))){

 a++;
 while (global.predicateB(5,(a<b))){
 System.out.println("");

 }
 }else if(global.predicateB(6,(b < a))) {
 b++;

 81

 }

 funmethod2();
 funmethod3();
 }

 public void funmethod2(){

 double chelsea = 0;
 double audrey = 0;
 double tori = 0;

 chelsea = a;
 audrey = b;
 tori = c;

 if(global.predicateB(7,(chelsea < tori))){

 while (global.predicateB(8,(chelsea < tori))){
 chelsea++;
 tori--;
 }

 }else if(global.predicateB(9,(chelsea > tori + 10))){

 chelsea--;
 chelsea--;
 }
 for (int i =0;global.predicateB(10, i < tori);i++){
 tori--;
 tori--;
 chelsea++;
 i++;
 audrey++;
 }

 }

 public void funmethod3(){

 b = a*a*a;

 while (global.predicateB(11,(b < a))){
 a = a/1.5;
 b++;
 }

 if(global.predicateB(12,(b < c))){
 b++;
 c =c*3.14;

 82

}
 if(global.predicateB(13,(c > 20))){

 c--;
 c--;
 c--;
 c = c/1.2;
 }
 if(global.predicateB(14,(b < c))){
 b =b*1.7;

 }

 }

}

 83

C. INSTRUMENTATION TOOL

1. InstrumentationTool.java

package thesis_work;

/* @author Toriano Murphy
 * Thesis work in "Statistical Debugging"
 * Thesis advisor "Professor Makihal Auguston"
 * Co-Adviors "Richard Riehle
 */

//Copy text from an input file (1st file named on command
line) to an output file
//(2nd file named on command line) overlooking all comments.
The input file
//will be instrumented for use in statistical debugging
research.

import java.io.*;

class InstrumentationTool {

 public static void main(String[] args) throws IOException
{
 if (args.length < 2) {
 System.err.println("Please supply an input file
name and an output file name.");
 System.exit(1);
 }
 File inFile = new File(args[0]);
 File outFile = new File(args[1]);
 BufferedReader br = new BufferedReader(new
FileReader(inFile));
 BufferedWriter bw = new BufferedWriter(new
FileWriter(outFile));

 int ch;
 int tempch = 0;
 int Counter = 0;
 int Parenthesis = 0;

 84

//main loop of the program
 while ((ch = br.read()) != -1) {
 if (ch == '/') {
 // here after seeing one slash; read the next
character
 // and decide what to do based on what it is
 ch = br.read();
 switch (ch) {
 case -1:
 // end-of-file: if the character after the
"slash" is
 // the end of file write out the slash and
exit the switch statement
 bw.write('/');
 break;
 case '/':
 // if another slash -- read (and ignore)
chars until end of file
 // or end of line.
 bw.write('/');
 bw.write('/');
 ch = br.read();

 //after seeing two slashes search for the end
of line
 while (ch != -1 && ch != '\n') {
 bw.write(ch);
 ch = br.read();
 }
 if (ch == '\n' || ch == -1) //bw.write(ch);
 break;

 case '*':
 // if the second character is an asterisk this is a block
//comment.
 bw.write('/');
 bw.write('*');
 ch = br.read();
 //ch2 = br.read();

// searches until the temch = * and ch = / everything thing else
//will be
 // over looked since it is in the comment.
 while (ch != -1 && ch != '/'){
 bw.write(ch);
 tempch = ch;
 ch = br.read();

 85

}
 //This if statement checks to see if there is really a star slash
//(*/)
 if(ch == '/' && tempch == '*'){
 bw.write(ch);
 ch = br.read();
 }

 break;

 //default case if previous ones are not met
 default:
 bw.write('/');
 bw.write(ch);
 ch = br.read();
 }
 }

 //check for keyword 'if' one character at a time
 if(ch == 'i'){

 ch = br.read();

 if(ch == 'f'){

 //instrumentation for the "if" condition
 Parenthesis++;
 bw.write("if(global.predicate(");
 //concerts the variable into a String
 bw.write(String.valueOf(Counter));

 Counter++;
 bw.write(",");
 ch =br.read();

 //Search for the open parenthesis
 while(ch != '('){

 bw.write(ch);
 ch = br.read();

 }

 bw.write(ch);
 ch = br.read();

 86

//Search for the last open parenthesis then add one more to
 //complete the instrumentation
 while(Parenthesis != 0){
 if(ch == '('){
 Parenthesis++;
 bw.write(ch);
 ch = br.read();
 }

 if (ch ==')'){

 Parenthesis--;
 bw.write(ch);
 bw.write(ch);
 ch = br.read();
 }else {
 bw.write(ch);
 ch = br.read();
 }
 }

 bw.write(")");

 }else{
 bw.write("i");
 bw.write(ch);
 ch = br.read();
 }

 }

 //Instrumentation code for the "while condition

 if(ch == 'w'){
 ch = br.read();
 if (ch == 'h'){
 ch = br.read();
 if (ch == 'i'){
 ch =br.read();
 if (ch == 'l'){
 ch = br.read();
 if (ch == 'e'){

 87

//instrumentation for the "while" loop
 Parenthesis++;
 bw.write("while
(global.predicate(");

bw.write(String.valueOf(Counter));

 Counter++;
 bw.write(",");
 ch =br.read();

 while(ch != '('){

 bw.write(ch);
 ch = br.read();
 }

 bw.write(ch);
 ch = br.read();

 while(Parenthesis != 0){
 if(ch == '('){
 Parenthesis++;
 bw.write(ch);
 ch = br.read();
 }

 if (ch ==')'){

 Parenthesis--;
 bw.write(ch);
 bw.write(ch);
 ch = br.read();
 }else {
 bw.write(ch);
 ch = br.read();
 }
 }

 bw.write(")");
 }else{
 bw.write("w");
 bw.write("h");
 bw.write("i");
 bw.write("l");
 bw.write(ch);
 ch = br.read();

 88

 }
 }else {
 bw.write("w");
 bw.write("h");
 bw.write("i");
 bw.write(ch);
 ch = br.read();
 }
 }else{
 bw.write("w");
 bw.write("h");
 bw.write(ch);
 ch = br.read();
 }
 }else{
 bw.write("w");
 bw.write(ch);
 ch = br.read();
 }
 }

 //instrumentation code for the "for condition
 if(ch == 'f'){

 ch = br.read();

 if (ch == 'o'){

 ch = br.read();

 if (ch == 'r'){

 bw.write("for");
 ch = br.read();

 if (ch ==' ' || ch == '('){

 while(ch != ';'){

 bw.write(ch);
 ch = br.read();

 89

THIS PAGE INTENTIONALLY LEFT BLANK

}

 bw.write(ch);
 bw.write("global.predicate(");

bw.write(String.valueOf(Counter));

 Counter++;
 bw.write(",");
 ch = br.read();

 while(ch != ';'){

 bw.write(ch);
 ch = br.read();

 }
 bw.write(")");
 bw.write(ch);
 ch = br.read();
 }
 else{

 bw.write(ch);

 }
 }

 }else {bw.write("f"); bw.write(ch); }
 }

 else{bw.write(ch);}

 }
 br.close();
 bw.close();
 }
}

 90

THIS PAGE INTENTIONALLY LEFT BLANK

 91

LIST OF REFERENCES

[1] A.X. Zheng, M.I. Jordan, B. Liblit, A. Aiken, Statistical Debugging of Sampled
Programs. Proceedings of the Seventh Annual Conference on Neural Information
Processing Systems, 2003.

[2] B. Liblit, M. Naik, A.X. Zheng, A. Aiken, J.I. Michael, Scalable Statistical Bug

Isolation. Proceeding of the 2005 ACM SIGPLAN. pp 15-26.

[3] A.X. Zheng, M.I. Jordan, B. Liblit, M. Naik, A. Aiken, Statistical Debugging:

Simultaneous Identification of Multiple Bugs. Proceedings of the 23rd
International Conference on Machine Learning. Pittsburg, PA, Vol 148. 2006.
pp 1105-1112.

[4] B. Liblit, A. Aiken, A.X. Zheng, M.I. Jordan, Bug Isolation via Remote Program

Sampling. ACM SIGPLAN, Vol 38, Issue 5. pp 141-154.

[5] C. Liu, Fault-aware Fingerprinting: Towards Mutualism between Failure

Investigation and Statistical Debugging. ACM, 2006.

[6] J. Dennis, G. Neelam, Improving Fault Detection Capability by Selectively

Retaining Test Cases during Test Suite Reduction. IEEECS, 2007.

[7] Henry Lieberman, The Debugging Scandal And What To Do About It.

Communications of the ACM. Vol 40, No. 4, April 1997.

[8] This link is to a repository of Java source code organized by topic.

www.java2s.com, last accessed March 2008.

[9] L. Choa, F. Long, Y. Xifeng, H. Jiwaei, P.M. Samual, Statistical Debugging: A

Hypothesis Testing-Based Approach. IEEE Transaction on Software Engineering,
Vol.32, No. 10, October 2006. pp 831-848.

 92

THIS PAGE INTENTIONALLY LEFT BLANK

 93

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. Mikhail Auguston
Naval Postgraduate School
Monterey, California

4. Richard Riehle
Naval Postgraduate School
Monterey, California

5. Toriano A. Murphy
Naval Postgraduate School
Monterey, California

